To work with Hive, we have to instantiate SparkSession with Hive support, including connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined functions if we are using Spark 2.0.0 and later.
If we are using earlier Spark versions, we have to use HiveContext which is variant of Spark SQL that integrates with data stored in Hive. Even when we do not have an existing Hive deployment, we can still enable Hive support.
In this tutorial, I am using standalone Spark. When not configured by the Hive-site.xml, the context automatically creates metastore_db in the current directory.
As shown below, initially, we do not have metastore_db but after we instantiate SparkSession with Hive support, we see that metastore_db has been created. Further, when we execute create database command, spark-warehouse is created.
First, let’s see what we have in the current working directory.
In this blog post, we will see how to use Spark with Hive, particularly:
- – how to create and use Hive databases
– how to create Hive tables
– how to load data to Hive tables
– how to insert data into Hive tables
– how to read data from Hive tables
– we will also see how to save data frames to any Hadoop supported file system
import os os.listdir(os.getcwd()) ['Leveraging Hive with Spark using Python.ipynb', 'derby.log']
Initially, we do not have metastore_db.
from pyspark.sql import SparkSession spark = SparkSession.builder.enableHiveSupport().getOrCreate()
Now, let’s check if metastore_db has been created.
os.listdir(os.getcwd()) ['Leveraging Hive with Spark using Python.ipynb', 'metastore_db', '.ipynb_checkpoints', 'derby.log']
Now, as you can see above, metastore_db has been created.
Now, we can use Hive commands to see databases and tables. However, at this point, we do not have any database or table. We will create them below.
spark.sql('show databases').show() +------------+ |databaseName| +------------+ | default| +------------+
spark.sql('show tables').show() +--------+---------+-----------+ |database|tableName|isTemporary| +--------+---------+-----------+ +--------+---------+-----------+
We can see the functions in Spark.SQL using the command below. At the time of this writing, we have about 250 functions.
fncs = spark.sql('show functions').collect() len(fncs) 252
Let’s see some of them.
for i in fncs[100:111]: print(i[0]) initcap inline inline_outer input_file_block_length input_file_block_start input_file_name instr int isnan isnotnull isnull
By the way, we can see what a function is used for and what the arguments are as below.
spark.sql("describe function instr").show(truncate = False) +-----------------------------------------------------------------------------------------------------+ |function_desc | +-----------------------------------------------------------------------------------------------------+ |Function: instr | |Class: org.apache.spark.sql.catalyst.expressions.StringInstr | |Usage: instr(str, substr) - Returns the (1-based) index of the first occurrence of `substr` in `str`.| +-----------------------------------------------------------------------------------------------------+
Now, let’s create a database. The data we will use is MovieLens 20M Dataset. We will use movies, ratings and tags data sets.
spark.sql('create database movies') DataFrame[]
Let’s check if our database has been created.
spark.sql('show databases').show() +------------+ |databaseName| +------------+ | default| | movies| +------------+
Yes, movies database has been created.
Now, let’s download the data. I am using Jupyter Notebook so ! enabes me to use shell commands.
! wget http://files.grouplens.org/datasets/movielens/ml-latest.zip --2018-01-10 22:07:23-- http://files.grouplens.org/datasets/movielens/ml-latest.zip Resolving files.grouplens.org (files.grouplens.org)... 128.101.34.235 Connecting to files.grouplens.org (files.grouplens.org)|128.101.34.235|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 248434223 (237M) [application/zip] Saving to: ‘ml-latest.zip’ ml-latest.zip 100%[===================>] 236.92M 1.02MB/s in 2m 40s 2018-01-10 22:10:04 (1.48 MB/s) - ‘ml-latest.zip’ saved [248434223/248434223]
Now, let’s create tables: in text file format, in ORC and in AVRO format. But first, we have to make sure we are using the movies database by switching to it using the command below.
spark.sql('use movies') DataFrame[]
The movies dataset has movieId, title and genres fields. The rating dataset, on the other hand, as userId, movieID, rating and timestamp fields. Now, let’s create the tables.
Please refer to the Hive manual for details on how to create tables and load/insert data into the tables.
spark.sql('create table movies \ (movieId int,title string,genres string) \ row format delimited fields terminated by ","\ stored as textfile') # in textfile format spark.sql("create table ratings\ (userId int,movieId int,rating float,timestamp string)\ stored as ORC" ) # in ORC format DataFrame[]
Let’s create another table in AVRO format. We will insert count of movies by generes into it later.
spark.sql("create table genres_by_count\ ( genres string,count int)\ stored as AVRO" ) # in AVRO format DataFrame[]
Now, let’s see if the tables have been created.
spark.sql("show tables").show() +--------+---------------+-----------+ |database| tableName|isTemporary| +--------+---------------+-----------+ | movies|genres_by_count| false| | movies| movies| false| | movies| ratings| false| | movies| tags| false| +--------+---------------+-----------+
We see all the tables we created above.
We can get information about a table as below. If we do not include formatted or extended in the command, we see only information about the columns. But now, we see even its location, the database and other attributes.
spark.sql("describe formatted ratings").show(truncate = False) +----------------------------+-------------------------------------------------------------------+-------+ |col_name |data_type |comment| +----------------------------+-------------------------------------------------------------------+-------+ |userId |int |null | |movieId |int |null | |rating |float |null | |timestamp |string |null | | | | | |# Detailed Table Information| | | |Database |movies | | |Table |ratings | | |Owner |fish | | |Created |Thu Jan 11 20:28:31 EST 2018 | | |Last Access |Wed Dec 31 19:00:00 EST 1969 | | |Type |MANAGED | | |Provider |Hive | | |Table Properties |[transient_lastDdlTime=1515720511] | | |Location |file:/home/fish/MySpark/HiveSpark/spark-warehouse/movies.db/ratings| | |Serde Library |org.apache.hadoop.Hive.ql.io.orc.OrcSerde | | |InputFormat |org.apache.hadoop.Hive.ql.io.orc.OrcInputFormat | | |OutputFormat |org.apache.hadoop.Hive.ql.io.orc.OrcOutputFormat | | |Storage Properties |[serialization.format=1] | | |Partition Provider |Catalog | | +----------------------------+-------------------------------------------------------------------+-------+
Now let’s load data into the movies table. We can load data from a local file system or from any hadoop supported file system. If we are using a hadoop directory, we have to remove local from the command below. Please refer the Hive manual for details. If we are loading it just one time, we do not need to include overwrite. However, if there is possibility that we could run the code more than one time, including overwrite is important not to append the same dataset to the table again and again. Hive does not do any transformation while loading data into tables. Load operations are currently pure copy/move operations that move datafiles into locations corresponding to Hive tables. Hive does some minimal checks to make sure that the files being loaded match the target table. So, pay careful attention to your code.
spark.sql("load data local inpath '/home/fish/MySpark/HiveSpark/movies.csv'\ overwrite into table movies") DataFrame[]
Rather than loading the data as a bulk, we can pre-process it and create a data frame and insert our data frame into the table. Let’s insert the rating data by first creating a data frame.
We can create dataframes in two ways.
by using the Spark SQL read function such as spark.read.csv, spark.read.json, spark.read.orc, spark.read.avro, spark.rea.parquet, etc.
by reading it in as an RDD and converting it to a dataframe after pre-processing it
Let’s specify schema for the ratings dataset.
from pyspark.sql.types import * schema = StructType([ StructField('userId', IntegerType()), StructField('movieId', IntegerType()), StructField('rating', DoubleType()), StructField('timestamp', StringType()) ])
Now, we can read it in as dataframe using dataframe reader as below.
ratings_df = spark.read.csv("/home/fish/MySpark/HiveSpark/ratings.csv", schema = schema, header = True)
We can see the schema of the dataframe as:
ratings_df.printSchema() root |-- userId: integer (nullable = true) |-- movieId: integer (nullable = true) |-- rating: double (nullable = true) |-- timestamp: string (nullable = true)
We can also display the first five records from the dataframe.
ratings_df.show(5) +------+-------+------+-------------+ |userId|movieId|rating| timestamp| +------+-------+------+-------------+ | 1| 110| 1.0|1.425941529E9| | 1| 147| 4.5|1.425942435E9| | 1| 858| 5.0|1.425941523E9| | 1| 1221| 5.0|1.425941546E9| | 1| 1246| 5.0|1.425941556E9| +------+-------+------+-------------+ only showing top 5 rows
The second option to create a data frame is to read it in as RDD and change it to data frame by using the toDF data frame function or createDataFrame from SparkSession. Remember, we have to use the Row function from pyspark.sql to use toDF.
from pyspark.sql import Row from pyspark import SparkContext, SparkConf conf = SparkConf().setMaster("local[*]") sc = SparkContext.getOrCreate(conf) rdd = sc.textFile("/home/fish/MySpark/HiveSpark/ratings.csv") header = rdd.first() ratings_df2 = rdd.filter(lambda line: line != header).map(lambda line: Row(userId = int(line.split(",")[0]), movieId = int(line.split(",")[1]), rating = float(line.split(",")[2]), timestamp = line.split(",")[3] )).toDF()
We can also do as below:
rdd2 = rdd.filter(lambda line: line != header).map(lambda line:line.split(",")) ratings_df2_b =spark.createDataFrame(rdd2, schema = schema)
We see the schema and the the first five records from ratings_df and ratings_df2 are the same.
ratings_df2.printSchema() root |-- movieId: long (nullable = true) |-- rating: double (nullable = true) |-- timestamp: string (nullable = true) |-- userId: long (nullable = true)
ratings_df2.show(5) +-------+------+----------+------+ |movieId|rating| timestamp|userId| +-------+------+----------+------+ | 110| 1.0|1425941529| 1| | 147| 4.5|1425942435| 1| | 858| 5.0|1425941523| 1| | 1221| 5.0|1425941546| 1| | 1246| 5.0|1425941556| 1| +-------+------+----------+------+ only showing top 5 rows
To insert a dataframe into a Hive table, we have to first create a temporary table as below.
ratings_df.createOrReplaceTempView(“ratings_df_table”) # we can also use registerTempTable
Now, let’s insert the data to the ratings Hive table.
spark.sql("insert into table ratings select * from ratings_df_table") DataFrame[]
Next, let’s check if the movies and ratings Hive tables have the data.
spark.sql("select * from movies limit 10").show(truncate = False) +-------+----------------------------------+-------------------------------------------+ |movieId|title |genres | +-------+----------------------------------+-------------------------------------------+ |null |title |genres | |1 |Toy Story (1995) |Adventure|Animation|Children|Comedy|Fantasy| |2 |Jumanji (1995) |Adventure|Children|Fantasy | |3 |Grumpier Old Men (1995) |Comedy|Romance | |4 |Waiting to Exhale (1995) |Comedy|Drama|Romance | |5 |Father of the Bride Part II (1995)|Comedy | |6 |Heat (1995) |Action|Crime|Thriller | |7 |Sabrina (1995) |Comedy|Romance | |8 |Tom and Huck (1995) |Adventure|Children | |9 |Sudden Death (1995) |Action | +-------+----------------------------------+-------------------------------------------+
spark.sql("select * from ratings limit 10").show(truncate = False) +------+-------+------+-------------+ |userId|movieId|rating|timestamp | +------+-------+------+-------------+ |52224 |51662 |3.5 |1.292347002E9| |52224 |54286 |4.0 |1.292346944E9| |52224 |56367 |3.5 |1.292346721E9| |52224 |58559 |4.0 |1.292346298E9| |52224 |59315 |3.5 |1.292346497E9| |52224 |60069 |4.5 |1.292346644E9| |52224 |60546 |4.5 |1.292346916E9| |52224 |63082 |4.0 |1.292347049E9| |52224 |68157 |3.5 |1.292347351E9| |52224 |68358 |4.0 |1.292347043E9| +------+-------+------+-------------+
We see that we can put our data in Hive tables by either directly loading data in a local or hadoop file system or by creating a data frame and registering the data frame as a temporary table.
We can also query data in Hive table and save it another Hive table. Let’s calculate a number of movies by genres and insert those genres which occur more than 500 times to genres_by_count AVRO Hive table we created above.
spark.sql("select genres, count(*) as count from movies\ group by genres\ having count(*) > 500 \ order by count desc").show() +--------------------+-----+ | genres|count| +--------------------+-----+ | Drama| 5521| | Comedy| 3604| | Documentary| 2903| | (no genres listed)| 2668| | Comedy|Drama| 1494| | Drama|Romance| 1369| | Comedy|Romance| 1017| | Horror| 944| |Comedy|Drama|Romance| 735| | Drama|Thriller| 573| | Crime|Drama| 567| | Horror|Thriller| 553| | Thriller| 530| +--------------------+-----+
spark.sql("insert into table genres_by_count \ select genres, count(*) as count from movies\ group by genres\ having count(*) >= 500 \ order by count desc") DataFrame[]
Now, we can check if the data has been inserted to the Hive table appropriately:
spark.sql("select * from genres_by_count order by count desc limit 3").show() +-----------+-----+ | genres|count| +-----------+-----+ | Drama| 5521| | Comedy| 3604| |Documentary| 2903| +-----------+-----+
We can also use data in Hive tables with other data frames by first registering the data frames as temporary tables.
Now, let’s create a temporary table from the tags dataset and then we will join it with movies and rating tables which are in Hive.
schema = StructType([ StructField('userId', IntegerType()), StructField('movieId', IntegerType()), StructField('tag', StringType()), StructField('timestamp', StringType()) ]) tags_df = spark.read.csv("/home/fish/MySpark/HiveSpark/tags.csv", schema = schema, header = True) tags_df.printSchema() root |-- userId: integer (nullable = true) |-- movieId: integer (nullable = true) |-- tag: string (nullable = true) |-- timestamp: string (nullable = true)
Next, register the dataframe as temporary table.
tags_df.registerTempTable('tags_df_table')
From the show tables Hive command below, we see that three of them are permanent but two of them are temporary tables.
spark.sql('show tables').show() +--------+----------------+-----------+ |database| tableName|isTemporary| +--------+----------------+-----------+ | movies| genres_by_count| false| | movies| movies| false| | movies| ratings| false| | |ratings_df_table| true| | | tags_df_table| true| +--------+----------------+-----------+
Now, lets’ join the three tables by using inner join. The result is a dataframe.
joined = spark.sql("select m.title, m.genres, r.movieId, r.userId, r.rating, r.timestamp as ratingTimestamp, \ t.tag, t.timestamp as tagTimestamp from ratings as r inner join tags_df_table as t\ on r.movieId = t.movieId and r.userId = t.userId inner join movies as m on r.movieId = m.movieId") type(joined) pyspark.sql.dataframe.DataFrame We can see the first five records as below. joined.select(['title','genres','rating']).show(5, truncate = False) +-------------------------------------------------------------+----------------------------+------+ |title |genres |rating| +-------------------------------------------------------------+----------------------------+------+ |Star Wars: Episode IV - A New Hope (1977) |Action|Adventure|Sci-Fi |4.0 | |Star Wars: Episode IV - A New Hope (1977) |Action|Adventure|Sci-Fi |4.0 | |She Creature (Mermaid Chronicles Part 1: She Creature) (2001)|Fantasy|Horror|Thriller |2.5 | |The Veil (2016) |Horror |2.0 | |A Conspiracy of Faith (2016) |Crime|Drama|Mystery|Thriller|3.5 | +-------------------------------------------------------------+----------------------------+------+ only showing top 5 rows
We can also save our dataframe in another file system.
Let’s create a new directory and save the dataframe in csv, json, orc and parquet formats.
Let’s see two ways to do that:
!pwd /home/fish/MySpark/HiveSpark
!mkdir output joined.write.csv("/home/fish/MySpark/HiveSpark/output/joined.csv", header = True) joined.write.json("/home/fish/MySpark/HiveSpark/output/joined.json") joined.write.orc("/home/fish/MySpark/HiveSpark/output/joined_orc") joined.write.parquet("/home/fish/MySpark/HiveSpark/output/joined_parquet" )
Now, let’s check if the data is there in the formats we specified.
! ls output joined.csv joined.json joined_orc joined_parquet
The second option to save data:
joined.write.format('csv').save("/home/fish/MySpark/HiveSpark/output/joined2.csv" , header = True) joined.write.format('json').save("/home/fish/MySpark/HiveSpark/output/joined2.json" ) joined.write.format('orc').save("/home/fish/MySpark/HiveSpark/output/joined2_orc" ) joined.write.format('parquet').save("/home/fish/MySpark/HiveSpark/output/joined2_parquet" )
Now, let’s see if we have data from both oprions.
! ls output joined2.csv joined2_orc joined.csv joined_orc joined2.json joined2_parquet joined.json joined_parquet
Similarly, let’s see two ways to read the data.
First option:
read_csv = spark.read.csv('/home/fish/MySpark/HiveSpark/output/joined.csv', header = True) read_orc = spark.read.orc('/home/fish/MySpark/HiveSpark/output/joined_orc') read_parquet = spark.read.parquet('/home/fish/MySpark/HiveSpark/output/joined_parquet') read_orc.printSchema() root |-- title: string (nullable = true) |-- genres: string (nullable = true) |-- movieId: integer (nullable = true) |-- userId: integer (nullable = true) |-- rating: float (nullable = true) |-- ratingTimestamp: string (nullable = true) |-- tag: string (nullable = true) |-- tagTimestamp: double (nullable = true)
second option:
read2_csv = spark.read.format('csv').load('/home/fish/MySpark/HiveSpark/output/joined.csv', header = True) read2_orc = spark.read.format('orc').load('/home/fish/MySpark/HiveSpark/output/joined_orc') read2_parquet = spark.read.format('parquet').load('/home/fish/MySpark/HiveSpark/output/joined_parquet') read2_parquet.printSchema() root |-- title: string (nullable = true) |-- genres: string (nullable = true) |-- movieId: integer (nullable = true) |-- userId: integer (nullable = true) |-- rating: float (nullable = true) |-- ratingTimestamp: string (nullable = true) |-- tag: string (nullable = true) |-- tagTimestamp: double (nullable = true)
We can also write a data frame into a Hive table by using insertInto. This requires that the schema of the DataFrame is the same as the schema of the table.
Let’s see the schema of the joined dataframe and create two Hive tables: one in ORC and one in PARQUET formats to insert the dataframe into.
joined.printSchema() root |-- title: string (nullable = true) |-- genres: string (nullable = true) |-- movieId: integer (nullable = true) |-- userId: integer (nullable = true) |-- rating: float (nullable = true) |-- ratingTimestamp: string (nullable = true) |-- tag: string (nullable = true) |-- tagTimestamp: double (nullable = true)
Create ORC Hive Table:
spark.sql("create table joined_orc\ (title string,genres string, movieId int, userId int, rating float, \ ratingTimestamp string,tag string, tagTimestamp string )\ stored as ORC" ) DataFrame[]
Create PARQUET Hive Table:
spark.sql("create table joined_parquet\ (title string,genres string, movieId int, userId int, rating float, \ ratingTimestamp string,tag string, tagTimestamp string )\ stored as PARQUET") DataFrame[]
Let’s see if the tables have been created.
spark.sql('show tables').show() +--------+----------------+-----------+ |database| tableName|isTemporary| +--------+----------------+-----------+ | movies| genres_by_count| false| | movies| joined_orc| false| | movies| joined_parquet| false| | movies| movies| false| | movies| ratings| false| | |ratings_df_table| true| | | tags_df_table| true| +--------+----------------+-----------+
They are there. Now, let’s insert dataframe into the tables.
joined.write.insertInto('joined_orc') joined.write.insertInto('joined_parquet')
Finally, let’s check if the data has been inserted into the Hive tbales.
spark.sql('select title, genres, rating from joined_orc order by rating desc limit 5').show(truncate = False) +---------------------------+-------------------------------------------+------+ |title |genres |rating| +---------------------------+-------------------------------------------+------+ |To Die For (1995) |Comedy|Drama|Thriller |5.0 | |Seven (a.k.a. Se7en) (1995)|Mystery|Thriller |5.0 | |Seven (a.k.a. Se7en) (1995)|Mystery|Thriller |5.0 | |Seven (a.k.a. Se7en) (1995)|Mystery|Thriller |5.0 | |Toy Story (1995) |Adventure|Animation|Children|Comedy|Fantasy|5.0 | +---------------------------+-------------------------------------------+------+
spark.sql('select title, genres, rating from joined_parquet order by rating desc limit 5').show(truncate = False) +-----------------------------------------+-----------------------+------+ |title |genres |rating| +-----------------------------------------+-----------------------+------+ |Beautiful Girls (1996) |Comedy|Drama|Romance |5.0 | |Before Sunrise (1995) |Drama|Romance |5.0 | |Beautiful Girls (1996) |Comedy|Drama|Romance |5.0 | |Twelve Monkeys (a.k.a. 12 Monkeys) (1995)|Mystery|Sci-Fi|Thriller|5.0 | |"Bridges of Madison County | The (1995)" |5.0 | +-----------------------------------------+-----------------------+------+
Everything looks great! See you in my next tutorial on Apache Spark.